 Normal view

# Practical analysis of algorithms / Dana Vrajitoru, William Knight.

Material type: TextPublisher: Cham : Springer, c.2014Description: xii, 466 p. : ill. ; 24 cmISBN: 9783319098876Additional physical formats: Printed edition:: No titleDDC classification: 005.1
Contents:
Introduction -- Mathematical Preliminaries -- Fundamental Notations in Analysis of Algorithms -- Recurrence Relations -- Deterministic Analysis of Algorithms -- Algorithms and Probabilities -- Finite Graph Algorithms -- Appendix: Probability Theory.
Summary: Analysis of algorithms plays an essential role in the education and training of any serious programmer preparing to deal with real world applications. Practical Analysis of Algorithms introduces the essential concepts of algorithm analysis required by core undergraduate and graduate computer science courses, in addition to providing a review of the fundamental mathematical notions necessary to understand these concepts. Throughout the text, the explanations are aimed at the level of understanding of a typical upper-level student, and are accompanied by detailed examples and classroom-tested exercises. Topics and features: Includes numerous fully-worked examples and step-by-step proofs, assuming no strong mathematical background Describes the foundation of the analysis of algorithms theory in terms of the big-Oh, Omega, and Theta notations Examines recurrence relations, a very important tool used in the analysis of algorithms Discusses the concepts of basic operation, traditional loop counting, and best case and worst case complexities Reviews various algorithms of a probabilistic nature, and uses elements of probability theory to compute the average complexity of algorithms such as Quicksort Introduces a variety of classical finite graph algorithms, together with an analysis of their complexity Provides an appendix on probability theory, reviewing the major definitions and theorems used in the book This clearly-structured and easy-to-read textbook/reference applies a unique, practical approach suitable for professional short courses and tutorials, as well as for students of computer science. Dr. Dana Vrajitoru is an Associate Professor of Computer Science at Indiana University South Bend, IN, USA. Dr. William Knight is an Emeritus Associate Professor at the same institution.
Tags from this library: No tags from this library for this title. Average rating: 0.0 (0 votes)
Item type Current location Collection Call number Vol info Status Date due Barcode Item holds Book - Borrowing
Lower Floor
Baccah 005.1 VRA (Browse shelf) 2000088 Available 000047752
Total holds: 0

Includes bibliographical references and index.

Introduction -- Mathematical Preliminaries -- Fundamental Notations in Analysis of Algorithms -- Recurrence Relations -- Deterministic Analysis of Algorithms -- Algorithms and Probabilities -- Finite Graph Algorithms -- Appendix: Probability Theory.

Available on campus and off campus with authorized login.

Analysis of algorithms plays an essential role in the education and training of any serious programmer preparing to deal with real world applications. Practical Analysis of Algorithms introduces the essential concepts of algorithm analysis required by core undergraduate and graduate computer science courses, in addition to providing a review of the fundamental mathematical notions necessary to understand these concepts. Throughout the text, the explanations are aimed at the level of understanding of a typical upper-level student, and are accompanied by detailed examples and classroom-tested exercises. Topics and features: Includes numerous fully-worked examples and step-by-step proofs, assuming no strong mathematical background Describes the foundation of the analysis of algorithms theory in terms of the big-Oh, Omega, and Theta notations Examines recurrence relations, a very important tool used in the analysis of algorithms Discusses the concepts of basic operation, traditional loop counting, and best case and worst case complexities Reviews various algorithms of a probabilistic nature, and uses elements of probability theory to compute the average complexity of algorithms such as Quicksort Introduces a variety of classical finite graph algorithms, together with an analysis of their complexity Provides an appendix on probability theory, reviewing the major definitions and theorems used in the book This clearly-structured and easy-to-read textbook/reference applies a unique, practical approach suitable for professional short courses and tutorials, as well as for students of computer science. Dr. Dana Vrajitoru is an Associate Professor of Computer Science at Indiana University South Bend, IN, USA. Dr. William Knight is an Emeritus Associate Professor at the same institution.

There are no comments for this item.